(1) Let the sequence $\{a_n\}_{n\geq 1}$ be defined by

$$
a_n = \tan(n\theta),
$$

where $tan(\theta) = 2$. Show that for all *n*, a_n is a rational number which can be written with an odd denominator.

(2) Consider a circle of radius 6 as given in the diagram below. Let B , C , D and E be points on the circle such that BD and CE , when extended, intersect at A. If AD and AE have length 5 and 4 respectively, and DBC is a right angle, then show that the length of BC is $\frac{12+9\sqrt{15}}{2}$ $\frac{9\sqrt{15}}{5}$.

(3) Suppose $f : \mathbb{R} \to \mathbb{R}$ is a function given by

$$
f(x) = \begin{cases} 1 & \text{if } x = 1, \\ e^{(x^{10}-1)} + (x-1)^2 \sin\left(\frac{1}{x-1}\right) & \text{if } x \neq 1. \end{cases}
$$

(a) Find $f'(1)$.
(b) Evaluate $\lim_{u \to \infty} \left[100 u - u \sum_{k=1}^{100} f\left(1 + \frac{k}{u}\right) \right].$

(4) Let *S* be the square formed by the four vertices $(1, 1), (1, -1), (-1, 1),$ and $(-1, -1)$. Let the region R be the set of points inside S which are closer to the centre than to any of the four sides. Find the area of the region *.*

P.T.O.

- (5) Let $g : \mathbb{N} \to \mathbb{N}$ with $g(n)$ being the product of the digits of n.
	- (a) Prove that $g(n) \leq n$ for all $n \in \mathbb{N}$.
	- (b) Find all $n \in \mathbb{N}$, for which $n^2 12n + 36 = g(n)$.
- (6) Let p_1, p_2, p_3 be primes with $p_2 \neq p_3$, such that $4 + p_1p_2$ and $4 + p_1p_3$ are perfect squares. Find all possible values of p_1, p_2, p_3 .
- (7) Let $A = \{1, 2, ..., n\}$. For a permutation $P = (P(1), P(2), \dots, P(n))$ of the elements of A , let $P(1)$ denote the first element of P . Find the number of all such permutations *P* so that for all $i, j \in A$:
	- if $i < j < P(1)$, then j appears before i in P; and
	- if $P(1) < i < j$, then *i* appears before *j* in *P*.
- (8) Let k, n and r be positive integers.
	- (a) Let $Q(x) = x^k + a_1 x^{k+1} + \cdots + a_n x^{k+n}$ be a polynomial with real coefficients. Show that the function $\frac{Q(x)}{x^k}$ is strictly positive for all real x satisfying

$$
0 < |x| < \frac{1}{1 + \sum_{i=1}^{n} |a_i|}.
$$

(b) Let $P(x) = b_0 + b_1x + \cdots + b_rx^r$ be a non-zero polynomial with real coefficients. Let m be the smallest number such that $b_m \neq$ 0. Prove that the graph of $y = P(x)$ cuts the *x*-axis at the origin (i.e. *P* changes sign at $x = 0$) if and only if *m* is an odd integer.

